

COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (CRADA) PROJECT

Cartridge, 40MM, HEDP, M433 Polysulfide Rubber Adhesive Replacement

Team: Melissa Wanner Brad Lett

TACOM-ARDEC American Ordnance, LLC

Picatinny Arsenal Milan Army Ammunition Plant

Dover, NJ. Milan, TN.

CRADA PROJECT METHOLOGY

American Ordnance, LLC, Milan has a highly trained staff in both Six Sigma and Lean Manufacturing methodologies. Using these methodologies has resulted in a culture focused on continuous improvements. The M433 Polysulfide Rubber Adhesive Replacement Project is one of many such projects underway at AO Milan.

CRADA PROJECT OVERVIEW

- Product & Field Application
- Improvement Concept
- Improvement Impact
- Improvement Design
- Implementation Plan
 - Product Qualification
 - Full Scale Production

- Project Result Goals
 - Improved Manufacturability
 - Improved Product Reliability
- Project Milestones
- Project Summary

Product and Field Application

- Product
 - 40MM, HEDP, M433
 - Low Velocity
 - Shoulder Fired
- Field Application
 - M203 Launcher
- Used By All Branches Of The Services

Improvement Concept

Problem:

Currently Polysulfide Rubber Seals Case to Projectile

- Difficult and Costly to Assemble Cartridge
- US Suppliers no longer in production

Objective:

Replace with Mechanical Seal

- O-Ring
- Crimp

Improvement Impact

- Replacing Polyfulfide Rubber, not Available Except Off Shore, with O-rings, available with Competitive Pricing
- Improve Productivity
 - Reduce Takt Time
 - Eliminate Polysulfide Rubber Laboratory Preparation
 - Eliminate Material Handling
 - Eliminate Assembly Operations
- Improve Robustness of & Reduce Variation in the Manufacturing Process
 - Mistake Proof Case to Projectile Assembly
 - Relocation of Crimp
 - Elimination of Heat Bay
 - Reduce Variation in Bullet Pull results

Process Operations Before and After

Process with Polysulfide Rubber

- **✓ Apply Polysulfide Rubber**
- ✓ Assemble Case to Projectile with Vacuum
- **✓** Stake Case to Projectile
- **✓ Pack Fuze Down**
- **✓** Transport to Heat Bay
- ✓ Condition 5 Hours @ 100 degrees F
- **✓** Transport to Assemble Line
- ✓ Remove Exuded/Cured Polysulfide Rubber
- **✓** Chamber Gage

Process with O-Ring

- ✓ Apply O-Ring
- **✓** Assemble Case to Projectile
- ✓ Rubber Die Crimp Case to Projectile
- **✓** Stake Case to Projectile
- **✓** Chamber Gage

Improvement Design

- Add Length to Skirt
 - Does not jeopardize integrity of cup/skirt bond
- Square Ring
 - Shallow Groove
 - Assembly Friendly
- Rubber Die Crimp
 - 25% Compression

Implementation Plan

- Product Qualification
 - Performance to Specification
 - Cartridge Ballistic Performance Verification
 - Continuous Sampling Will Be In Place During LAP
 - Budget
 - Reduced Labor
 - Reduced Material Cost
 - Reduced Utility Cost
 - Schedule
 - Polysulfide Rubber Purchasing Problem Eliminated
 - O-rings Readily Available
 - Process Modifications Short Term

Improvement Plan

- Full Scale Production
 - Improvements Will be Continuously Measured
 - Continuous Sampling During LAP
 - Ballistic Performance Tested on Each Lot
 - Design Change Mistakes Proofs Much of Process
 - Control
 - Statistical Process Control Applied to Quantify Improvements
 - Statistical Process Control Will Identify Abnormal Changes in Process

Project Result Goals

- Improved Manufacturability
 - Steps to Achieve Goals
 - Eliminates Processing in Laboratory
 - Eliminates Blending of Accelerator
 - Eliminates Application Equipment Clean-up
 - Eliminates Removal of Exuded/Cured Adhesive From Cartridges
 - Assembly With O-ring
 - Process Cycle Time Reduction 500%
 - Adhesive/O-Ring Material Cost Reduced 44%
 - Assembly Labor Hours Reduced 36%
 - Virtually Mistakes Proofs a Major Portion of Process
 - Total Unit Cost Reduced 3%
 - Improve Availability and Lead Time on Components
 - Decrease Production Downtime by 15%

Project Result Goals

- Improved Product Reliability
 - Ballistic Performance, Standard Deviation, Improved 10%
 - Cartridge Seal Reliability Up
 - Improved Ability to Store in Extreme Environments
 - Improved Seal Deterioration Eliminated for Long Term Storage

Project Milestones

	3nd Qtr. 2002	4ra Qtr. 2002	2003	2003	2003
Develop Concept					
Develop SOW & Test Plan					
Assemble & Test					
Revise Technical Data					
Change Production Process					
Production Using New Design					

Project Summary

- Product Quality Level Increased
- Reduced Cost, Labor & Materials
- Quality Up/Cost Down = Satisfied Customer
- Thanks To ARDEC And American Ordnance Management For The Continued Project Support